IBMA (Image-based meta-analysis)ΒΆ

_images/ibma.png
  • data: matrix
    • filetype: files in the filetype will be searched in input directories.
    • data dir: directory where all ttest2*.mat results are stored.
  • data: volume
    • center info: number of subjects for different centers. A csv format table is required. N1 and N2 is the number of subjects in each group.
      center N1 N2
      ttest2_center1_a_vs_b 40 39
      ttest2_center2_a_vs_b 38 37
    • mask: could be whole brain mask or gray matter mask.

    • id index: identifier to find unique string for each subject

    • filetype: files in the filetype will be searched in input directories.

    • data dir: directories can be input either using a .txt file or spm select window.

  • Multiple comparison correction methods (voxel-wise)
    • threshold: the level of MULCC
    • fdrID: false discovery rate (independent input)
    • fdrN: false discovery rate (inputs not independent)
    • bonf: Bonferroni correction for family wise error rate
  • IBMA Methods:
  • out dir: output directory for saving results.
  • Buttons:
    • S: Save parameters of the current panel to a *.mat file. The *.mat can be further loaded for the panel or be used in a script processing.
    • L: Load parameters from *.mat for the current panel.
    • ?: Help information.
  • References:
  1. Stouffer’s z-score

    Stouffer, S.A., Suchman, E.A., DeVinney, L.C., Star, S.A. and Williams Jr, R.M., 1949. The American soldier: Adjustment during army life.(Studies in social psychology in World War II), Vol. 1. Princeton University Press, Princeton,.

  2. Fisher

    Fisher, R.A. (1925). Statistical Methods for Research Workers. Oliver and Boyd (Edinburgh). ISBN 0-05-002170-2.

  3. Fixed/mixed Effects Model

    Hedges, L.V. (1992). Meta-Analysis. Journal of Educational and Behavioral Statistics. 17(4), 279-296. doi: 10.3102/10769986017004279.

    Konstantopoulos, S. (2006). Fixed and mixed effects models in meta-analysis. Iza Discussion Papers.

  4. Worsley and Friston’s method

    Worsley, K.J., and Friston, K.J. (2000). A test for a conjunction. Statistics & Probability Letters. 47(2), 135-140. doi: 10.1016/S0167-7152(99)00149-2.

  5. Nichols’s method

    Nichols, T., Brett, M., Andersson, J., Wager, T., and Poline, J.B. (2005). Valid conjunction inference with the minimum statistic. Neuroimage. 25(3), 653-660. doi: 10.1016/j.neuroimage.2004.12.005.